Monday, 8 April 2024

TRIGONOMETRY FULL CONCEPT

 

















Trigonometry Formulas
sin(−θ) = − sin θ
cos(−θ) = cos θ
tan(θ− tan θ
cosec(θ− cosecθ
sec(θsec θ
cot(θ− cot θ
Sin( π/2- θ) = cosθ
Cos(π/2 -θ) = sin θ
tan(π/2 -θ) = cot θ
cot(π/2 -θtan θ
Sec(π/2 - θcosecθ
cosec(π/2 - θsec θ

Sin( π/2+ θ) = cosθ
Cos(π/2 +θ) = - sin θ
tan(π/2 + θ) = - cot θ
cot(π/2 + θ= - tan θ
Sec(π/2 + θ= - cosecθ
cosec(π/2 + θ=  sec θ

Sin( π- θ) = Sinθ
Cos(π -θ) = -Cos θ
tan(π - θ) = - tan θ
cot(π - θ= - Cot θ
Sec(π - θ= - Sec θ
cosec(π - θ= Cosec θ
Sin( π + θ) = - Sinθ
Cos(π + θ) = - Cos θ
tan(π + θ) =  tan θ
cot(π + θ=  Cot θ
Sec(π + θ= - Sec θ
cosec(π + θ= - Cosec θ
Sin( 3π/2- θ) = - cosθ
Cos( 3π/2 -θ) = - sin θ
tan( 3π/2 -θ) = cot θ
cot( 3π/2 -θtan θ
Sec( 3π/2 - θ= - cosecθ
cosec( 3π/2 - θ= - sec θ
Sin( 3π/2+ θ) = - cosθ
Cos( 3π/2 +θ) =  sin θ
tan( 3π/2 + θ) = - cot θ
cot( 3π/2 + θ= - tan θ
Sec( 3π/2 + θ=  cosecθ
cosec( 3π/2 + θ= - sec θ
Sin( 2π- θ) = - Sinθ
Cos( 2π -θ) = Cos θ
tan( 2π - θ) = - tan θ
cot( 2π - θ= - Cot θ
Sec( 2π - θ=  Sec θ
cosec( 2π - θ= - Cosec θ

Sin( 2π + θ) =  Sinθ
Cos( 2π + θ) =  Cos θ
tan( 2π + θ) =  tan θ
cot( 2π + θ=  Cot θ
Sec( 2π + θ=  Sec θ
cosec( 2π + θ=  Cosec θ

  • sin θ =perpendicular / Hypotenuse
  • cos θ = Base / Hypotenuse
  • tan θ = Perpendicular / Base
  • cot θ = Base / Perpendicular
  • sec θ = Hypotenuse / Base
  • cosec θ = Hypotenuse /  perpendicular

Reciprocal Identities

  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ
  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ
 In Form of sin and cos:

      tanθ      =  sinθ / cosθ
      cotθ.    = 
cosθ /sinθ
      secθ     = 1 / cosθ
   Cosecθ  = 1 / sinθ



Pythagorean Identities

sin²θ + cos²θ = 1
sin²θ = 1- cos²θ
cos²θ = 1 - sin²θ

sec²θ - tan²θ = 1
sec²θ = 1 + tan²θ
sec²θ - 1 = tan²θ 


Cosec²θ  -  cot²
θ = 1
Cosec²θ  = 1 + cot²θ
 Cosec²θ  - 1 = cot²θ 
Double Angle Formulas 
sin2A = 2sinA cosA
           = [2tan A /(1+tan2A)] 

cos2A = cos2A–sin2A
             =1–2sin
2A
             =2cos
2A–1
             = [(1-tan
2A)/(1+tan2A)]

 
tan 2A = (2 tan A)/(1-tan2A)
Thrice of Angle Formulas.
  • sin3A = 3sinA – 4sin3A
  • cos3A = 4cos3A – 3cosA
  • tan3A = [3tanA–tan3A]/[1−3tan2A]
Sum and Difference Formulas hi

sin (A+B) = sin A cos B + cos A sin B

sin (A -B) = sin A cos B – cos A sin B

cos (A + B) = cos A cos B – sin A sin B

cos (A – B) = cos A cos B + sin A sin B

tan(A+B) = [(tan tan B)/(– tan tan B)] 

tan(A-B) = [(tan A – tan B)/(1 + tan tan B)] 

cot(A+B= [(coco− 1)/(cocoA)] 

cot(A-B= [(cocoB + 1)/(coB – coA)]

Product to Sum Formulas

2 Sin A Sin B =  [Cos (A-B) – Cos (A+B)]

2 Cos A Cos B =  [Cos (A-B) + Cos (A+B)]

2 Sin A Cos B =  [Sin (A+B) + Sin (A-B)]

2 Cos A Sin B =  [Sin (A+B) – Sin (A-B)]

Sum to Product Formulas


sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]


Some additional formulas for sum and product of an

  • sin2A  –   sin2B  =    sin(A+B) sin(A–B)

  • cos2A –  cosB   =    Sin(B+A) .Sin(B–A) 

  • a.sinx + b.cosx:.   Max value =✓a²+b²
  •                                 Min value = - ✓a²+b²




General Solution of Trigonometry:
EquationsSolutions
sin x = 0 x = nπ
cos x = 0x = ( 2n + 1) π/2
tan x = 0x = nπ
sin x = 1x = (2nπ + π/2) = (4n+1)π/2
cos x = 1x = 2nπ
sin x = sin θx = nπ + (-1)nθ, where θ ∈ [-π/2, π/2]
cos x = cos θx = 2nπ ± θ, where θ ∈ (0, π]
tan x = tan θx = nπ + θ, where θ ∈ (-π/2 , π/2]
sin ²x =
sin ²θ
x = nπ ± θ
cos ²x= cos²θx = nπ ± θ
tan 2x =
tan 2θ
x = nπ ± θ


















Sinx  =  Siny.         Then   x =   nπ +(-1)



1 comment:

  1. This comment has been removed by the author.

    ReplyDelete

Worksheet of A.P

  1. The common difference of the AP 1/p, (1 -p) /p ,(1 - 2p)/p is..  (a) p.        (b) -p.       (c) -1        (d) 1 2. If the nth term of...