| Trigonometry Formulas |
| sin(−θ) = − sin θ |
| cos(−θ) = cos θ |
| tan(−θ) = − tan θ |
| cosec(−θ) = − cosecθ |
| sec(−θ) = sec θ |
| cot(−θ) = − cot θ |
| Sin( π/2- θ) = cosθ |
| Cos(π/2 -θ) = sin θ |
| tan(π/2 -θ) = cot θ |
| cot(π/2 -θ) = tan θ |
| Sec(π/2 - θ) = cosecθ |
| cosec(π/2 - θ) = sec θ |
|
| Sin( π/2+ θ) = cosθ | | Cos(π/2 +θ) = - sin θ | | tan(π/2 + θ) = - cot θ | | cot(π/2 + θ) = - tan θ | | Sec(π/2 + θ) = - cosecθ | | cosec(π/2 + θ) = sec θ |
|
|
| Sin( π- θ) = Sinθ | | Cos(π -θ) = -Cos θ | | tan(π - θ) = - tan θ | | cot(π - θ) = - Cot θ | | Sec(π - θ) = - Sec θ | | cosec(π - θ) = Cosec θ | | Sin( π + θ) = - Sinθ | | Cos(π + θ) = - Cos θ | | tan(π + θ) = tan θ | | cot(π + θ) = Cot θ | | Sec(π + θ) = - Sec θ | | cosec(π + θ) = - Cosec θ |
|
|
| Sin( 3π/2- θ) = - cosθ | | Cos( 3π/2 -θ) = - sin θ | | tan( 3π/2 -θ) = cot θ | | cot( 3π/2 -θ) = tan θ | | Sec( 3π/2 - θ) = - cosecθ | | cosec( 3π/2 - θ) = - sec θ |
|
| Sin( 3π/2+ θ) = - cosθ | | Cos( 3π/2 +θ) = sin θ | | tan( 3π/2 + θ) = - cot θ | | cot( 3π/2 + θ) = - tan θ | | Sec( 3π/2 + θ) = cosecθ | | cosec( 3π/2 + θ) = - sec θ |
|
| Sin( 2π- θ) = - Sinθ | | Cos( 2π -θ) = Cos θ | | tan( 2π - θ) = - tan θ | | cot( 2π - θ) = - Cot θ | | Sec( 2π - θ) = Sec θ | | cosec( 2π - θ) = - Cosec θ |
|
| Sin( 2π + θ) = Sinθ | | Cos( 2π + θ) = Cos θ | | tan( 2π + θ) = tan θ | | cot( 2π + θ) = Cot θ | | Sec( 2π + θ) = Sec θ | | cosec( 2π + θ) = Cosec θ |
|
- sin θ =perpendicular / Hypotenuse
- cos θ = Base / Hypotenuse
- tan θ = Perpendicular / Base
- cot θ = Base / Perpendicular
- sec θ = Hypotenuse / Base
- cosec θ = Hypotenuse / perpendicular
|
Reciprocal Identities |
- cosec θ = 1/sin θ
- sec θ = 1/cos θ
- cot θ = 1/tan θ
- sin θ = 1/cosec θ
- cos θ = 1/sec θ
- tan θ = 1/cot θ
|
In Form of sin and cos:
tanθ = sinθ / cosθ cotθ. = cosθ /sinθ secθ = 1 / cosθ Cosecθ = 1 / sinθ
Pythagorean Identities
sin²θ + cos²θ = 1 sin²θ = 1- cos²θ cos²θ = 1 - sin²θ
sec²θ - tan²θ = 1 sec²θ = 1 + tan²θ sec²θ - 1 = tan²θ
Cosec²θ - cot²θ = 1 Cosec²θ = 1 + cot²θ Cosec²θ - 1 = cot²θ |
Double Angle Formulas sin2A = 2sinA cosA = [2tan A /(1+tan2A)]
cos2A = cos2A–sin2A =1–2sin2A =2cos2A–1 = [(1-tan2A)/(1+tan2A)]
tan 2A = (2 tan A)/(1-tan2A) |
Thrice of Angle Formulas.
- sin3A = 3sinA – 4sin3A
- cos3A = 4cos3A – 3cosA
- tan3A = [3tanA–tan3A]/[1−3tan2A]
|
Sum and Difference Formulas hi
sin (A+B) = sin A cos B + cos A sin B sin (A -B) = sin A cos B – cos A sin B cos (A + B) = cos A cos B – sin A sin B
cos (A – B) = cos A cos B + sin A sin B tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)] tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)] cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)] cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)] |
Product to Sum Formulas2 Sin A Sin B = [Cos (A-B) – Cos (A+B)] 2 Cos A Cos B = [Cos (A-B) + Cos (A+B)] 2 Sin A Cos B = [Sin (A+B) + Sin (A-B)] 2 Cos A Sin B = [Sin (A+B) – Sin (A-B)] Sum to Product Formulas
| sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2] | | sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2] | | cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2] | | cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2] |
|
Some additional formulas for sum and product of an
- sin2A – sin2B = sin(A+B) sin(A–B)
- cos2A – cos2 B = Sin(B+A) .Sin(B–A)
- a.sinx + b.cosx:. Max value =✓a²+b²
- Min value = - ✓a²+b²
General Solution of Trigonometry:
| Equations | Solutions |
| sin x = 0 | x = nπ |
| cos x = 0 | x = ( 2n + 1) π/2 |
| tan x = 0 | x = nπ |
| sin x = 1 | x = (2nπ + π/2) = (4n+1)π/2 |
| cos x = 1 | x = 2nπ |
| sin x = sin θ | x = nπ + (-1)nθ, where θ ∈ [-π/2, π/2] |
| cos x = cos θ | x = 2nπ ± θ, where θ ∈ (0, π] |
| tan x = tan θ | x = nπ + θ, where θ ∈ (-π/2 , π/2] |
sin ²x = sin ²θ | x = nπ ± θ |
| cos ²x= cos²θ | x = nπ ± θ |
tan 2x = tan 2θ | x = nπ ± θ |
Sinx = Siny. Then x = nπ +(-1)
This comment has been removed by the author.
ReplyDelete