जब 3 से अधिक terms एक साथ आ जाएं तो उसे ही Polynomial कहा जाता है |
Denoted by P(x
-----------------------------------------------------------------------------------------------------------------------------------------
.................................................................................................................................................
2. CONSTANT:. value or number that never changes ,
Ex. 2, 5, 0, -3, -7, 2/7, 7/9 etc.
.................................................................................................................................................
.................................................................................................................................................
4. ALGEBRAIC EXPRESSION.
An algebraic expression consisting one or more terms in which variables may have anything as power including positive, negative or fractions.
EXAMPLE:
6x² -7x + 5
5+1/y = 5 + y-¹
3 + √x - x²....... etc
.................................................................................................................................................
5. POLYNOMIAL:
A polynomial is an algebraic expression containing one or more terms in which the power of the variable is always a whole numbers.
EXAMPLES:
3x²,
4y - 8
8y ³+ 5y² + y . etc.
.................................................................................................................................................
6. TERMS AND COEFFICIENTS OF A
POLYNOMIAL
.................................................................................................................................................
.................................................................................................................................................
8. DEGREE OF A POLYNOMIAL :
.................................................................................................................................................
9. ZEROES OF A POLYNOMIAL.
the points where the polynomial becomes zero as a whole.
For example, consider f(x) = 3x – 12. Now, put x = 4 in the polynomial, i.e., f(4) = 3×4 – 12 = 0. Thus, x = 4 is a zero of polynomial f(x) = 3x – 12.
.................................................................................................................................................
10. REMAINDER THEOREM
If a polynomial p(x) is divided by the binomial x-a, the remainder obtained is p(a).
example,
if p(x) = x³- 4x² - 7x + 10 was divided by
(x-2), the remainder can be determined by finding p(2).
p(x) = x³- 4x² - 7x + 10
p(2) = (2)³ - 4(2)² - 7(2) + 10
= 8-16-14 + 10 = -12
.................................................................................................................................................
11. FACTOR THEOREM
If f(x) is a polynomial of degree n greater than or equal to 1, and 'a' is any real number, then (x - a) is a factor of f(x) if f(a) = 0.
Example: P(x) = x² - 5x + 6
Put x= 2., P(2) = 2² -5×2 + 6. = 0
(Reminder=0)
so (x - 2) is a factor of x² - 5x + 6.
.................................................................................................................................................
12. FACTORISATION OF A POLYNOMIAL
.................................................................................................................................................
13. GRAPHICAL REPRESENTATIONS
The graph of P(x) depends upon its degree. A polynomial having one variable which has the largest exponent is called a degree of the polynomial.
- Constant Polynomial Function: P(x) = a = ax0
- Zero Polynomial Function: P(x) = 0; where all ai’s are zero, i = 0, 1, 2, 3, …, n.
- Linear Polynomial Function: P(x) = ax + b
- Quadratic Polynomial Function: P(x) = ax2+bx+c
- Cubic Polynomial Function: ax3+bx2+cx+d
- Quartic Polynomial Function: ax4+bx3+cx2+dx+e
GRAPHICAL REPRESENTATIONS IS NOT MUST.)....
.................................................................................................................................................
14. RELATIONSHIP BETWEEN ZEROES
AND COEFFICIENTS
I. Linear polynomial ( ax+b)
Zero of Polynomial (α) = -b/a
Quadratic polynomial ( ax² + bx + c )
Sum of zeroes. (α+ β). = -b/a
Product of zeroes (α. β) = c/a
Cubic polynomial ( ax³ + bx² + cx + d )
Sum of zeroes. (α+ β+ γ) = -b/a
Sum of the product of zeroes.( α.β+ βγ+γα) = c/a
Product of zeroes (α.β. γ) -d/a
.................................................................................................................................................
Polynomial Identities
- (x + y)2= x2 + 2xy + y2
- (x – y)2= x2 – 2xy + y2
- x2– y2 = (x + y)(x – y)
- (x + a)(x + b) = x2+ (a + b)x + ab
- (x + y + z)2= x2 + y2 + c2 + 2xy + 2yz + 2zx
- (x + y)3= x3 + y3 + 3xy (x + y)
- (x – y)3= x3 – y3 – 3xy (x – y)
- x3+ y3 = (x + y)(x2 – xy + y2)
- x3– y3 = (x – y)(x2 + xy + y2)
- x3+ y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️
- (x + y)2= x2 + 2xy + y2
- (x – y)2= x2 – 2xy + y2
- x2– y2 = (x + y)(x – y)
- (x + a)(x + b) = x2+ (a + b)x + ab
- (x + y + z)2= x2 + y2 + c2 + 2xy + 2yz + 2zx
- (x + y)3= x3 + y3 + 3xy (x + y)
- (x – y)3= x3 – y3 – 3xy (x – y)
- x3+ y3 = (x + y)(x2 – xy + y2)
- x3– y3 = (x – y)(x2 + xy + y2)
- x3+ y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx)





.png)











Very good notes to make maths easy
ReplyDeleteAgar hamen aise hi notes milte rahe to hamara maths bahut achcha ho jaega. Thank you sir ji
ReplyDelete