Friday, 19 April 2024

10.POLYNOMIAL BASICS CONCEPTS



 
जब 3 से अधिक terms एक साथ आ जाएं तो उसे ही Polynomial  कहा जाता है |

Denoted by P(x

 
-----------------------------------------------------------------------------------------------------------------------------------------

1.  VARIABLE:       A letter that represent an unknown number. x,y,z,a,b,c,p,q,r..... 



                                 




 



.................................................................................................................................................


2.  CONSTANT:.   value or number that never changes ,
Ex.     2, 5, 0, -3, -7, 2/7, 7/9 etc.




              

.................................................................................................................................................

  • 3.   TERM:          
  •                                
  • x² ,5x,  y² /3.   ,  7 Z³ / 5,   and 2 are the terms of the polynomial.  



                                       




                                     



.................................................................................................................................................

4.   ALGEBRAIC EXPRESSION.    

An algebraic expression  consisting one or more terms in which variables may have anything as power including  positive, negative or fractions. 

EXAMPLE:  

6x² -7x + 5
5+1/y = 5 + y-¹
3 + √x - x²....... etc


.................................................................................................................................................



5.   POLYNOMIAL:     

A polynomial is an algebraic expression containing one or more terms in which the  power of the variable is always  a whole numbers. 

EXAMPLES: 
3x²,
4y - 8
8y ³+  5y² + y .  etc.


                             




.................................................................................................................................................

6.   TERMS AND COEFFICIENTS OF A          
        POLYNOMIAL




.................................................................................................................................................

7.    TYPES OF A POLYNOMIAL:   

.................................................................................................................................................

8.    DEGREE OF A POLYNOMIAL :




.................................................................................................................................................

9.    ZEROES OF A POLYNOMIAL.     



the points where the polynomial becomes zero as a whole


For example, consider f(x) = 3x – 12. Now, put x = 4 in the polynomial, i.e., f(4) = 3×4 – 12 = 0. Thus, x = 4 is a zero of polynomial f(x) = 3x – 12.

.................................................................................................................................................

10.   REMAINDER THEOREM


If a polynomial p(x) is divided by the binomial x-a, the remainder obtained is p(a).

 example,

 if p(x) = x³- 4x² - 7x + 10 was divided by 
(x-2), the remainder can be determined by finding p(2).

p(x) = x³- 4x² - 7x + 10
p(2) = (2)³ - 4(2)² - 7(2) + 10
= 8-16-14 + 10 = -12


.................................................................................................................................................

11.   FACTOR THEOREM 

If f(x) is a polynomial of degree n greater than or equal to 1, and 'a' is any real number, then (x - a) is a factor of f(x) if f(a) = 0.


Example:    P(x) = x² - 5x + 6
Put x= 2., P(2) = 2² -5×2 + 6. = 0          
                                                      (Reminder=0)
so (x - 2) is a factor of x² - 5x + 6.

.................................................................................................................................................

12.   FACTORISATION OF A POLYNOMIAL





.................................................................................................................................................

13.   GRAPHICAL REPRESENTATIONS

The graph of P(x) depends upon its degree. A polynomial having one variable which has the largest exponent is called a degree of the polynomial.


  • Constant Polynomial Function: P(x) = a = ax0
  • Zero Polynomial Function: P(x) = 0; where all ai’s are zero, i = 0, 1, 2, 3, …, n.
  • Linear Polynomial Function: P(x) = ax + b
  • Quadratic Polynomial Function: P(x) = ax2+bx+c
  • Cubic Polynomial Function: ax3+bx2+cx+d
  • Quartic Polynomial Function: ax4+bx3+cx2+dx+e










  GRAPHICAL REPRESENTATIONS IS NOT MUST.)....


.................................................................................................................................................

14.   RELATIONSHIP BETWEEN ZEROES 
        AND COEFFICIENTS
                    

I. Linear polynomial     ( ax+b)

Zero of Polynomial  (α) =  -b/a





Quadratic polynomial      ( ax² + bx + c )

Sum of zeroes.       (α+ β).   =     -b/a
Product of zeroes   (α. β)    = c/a



Cubic polynomial    ( ax³ + bx² + cx +  d )

Sum of zeroes.   (α+ β+ γ)   = -b/a

Sum of the product of zeroes.( α.β+ βγ+γα)   c/a
Product of zeroes (α.β. γ)     -d/a
.................................................................................................................................................

Polynomial Identities

  1. (x + y)2= x2 + 2xy + y2
  2. (x – y)2= x2 – 2xy + y2
  3. x2– y2 = (x + y)(x – y)
  4. (x + a)(x + b) = x2+ (a + b)x + ab
  5. (x + y + z)2= x2 + y2 + c2 + 2xy + 2yz + 2zx
  6. (x + y)3= x3 + y3 + 3xy (x + y)
  7. (x – y)3= x3 – y3 – 3xy (x – y)
  8. x3+ y3 = (x + y)(x2 – xy + y2)
  9. x3– y3 = (x – y)(x2 + xy + y2)
  10. x3+ y3 + z– 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️®️

2 comments:

  1. Agar hamen aise hi notes milte rahe to hamara maths bahut achcha ho jaega. Thank you sir ji

    ReplyDelete

Worksheet of A.P

  1. The common difference of the AP 1/p, (1 -p) /p ,(1 - 2p)/p is..  (a) p.        (b) -p.       (c) -1        (d) 1 2. If the nth term of...