Wednesday, 29 May 2024

INTEGRATION FORMULAS WITH CONCEPT

  

                                                                   INTEGRATION CONCEPT                                         


   


                             Integral = Anti derivatives = Primitive                                          


Integration –The process of finding the function f(x) whose differential coeffiicient w.r.t. ‘x’, denoted by F (x) is given,  

written as: 

∫ F(x) dx = f(x) + C


Thus, integration is an inverse process of differentiation 

                    or 

integration is anti of differentiation.                                         .   




--

                                                                                                                                  

Note:

●.All functions are not integrable and 

●.the integral of a function is not unique.

Ex:        √sinx , √cosx.  

 ●. If a polynomial function of a degree n isintegrated we get a polynomial of degree n + 1.


An important fact.

 d/dx [ ∫ f(x) dx = f(x) + C

-----------------------------------------------------------

1.   Integration is an operation on function.

-------------------------------------------------------------

2  .∫ [ f(x) +g(x).... ] dx = ∫ f(x) dx +  ∫g(x)dx....

-------------------------------------------------------------

3.   ∫ k dx =   k∫ 1 dx + c=   kx + C (Constant)


      ∫  0 dx =  C (Constant)

-------------------------------------------------------------

4.   ∫  xn  dx =  (xn+1) / (n+1),(where                n ≠ -1)

------------------------------------------------------------

5.   ∫ ex dx = ex + C.

-------------------------------------------------------------

6.   ∫ 1/x dx = log|x| + c

-------------------------------------------------------------

7.    

-------------------------------------------------------------

8.   ∫  sin x dx = – cos x + c 

-------------------------------------------------------------

9.    ∫  cos x dx = sin x + c

-------------------------------------------------------------

10.  ∫tan x dx = log |sec x| + c 

                         = – log |cos x | + c

-------------------------------------------------------------

11.  ∫ cot x dx = log |sin x| + c

-------------------------------------------------------------

11.  ∫  sec x dx = log |sec x + tan x| + c

-------------------------------------------------------------

12.∫cosec x dx =log|cosec x – cot x|+ c


--------------------------------------------------------    --


Only sec²x, cosec²x has integration other are done after making changes.

------------------------------------------------------------

13.  ∫ sin²x dx..........

-------------------------------------------------------------

14.  ∫ cos²x dx........

-------------------------------------------------------------

15.  ∫  tan²x dx.....

-------------------------------------------------------------

16.  ∫ cot²x   dx......

-------------------------------------------------------------

17.  ∫ sec²x dx = tan x + c

-------------------------------------------------------------

18.  ∫  cosec²x dx = – cot x + c

-------------------------------------------------------------

19.  ∫  sec x tan x dx = sec x + c

-------------------------------------------------------------

20. ∫ cosec x cot x dx = – cosec x + c

-------------------------------------------------------------

Worksheet:

find the integration of sin²x , sin³x , sin⁴x , cos²x , cos³x , cos⁴x, 


-------------------------------------------------------------

---------------------------------------------------------------------

---------------------------------------------------------------------

-------------------------------------------------------------

जब Numerator  1 हो तथा Denominator under root के अंदर न आया हो, without root  हो,

-------------------------------------------------------------

---------------------------------------------------------------------

---------------------------------------------------------------------
---------------------------------------------------------------------

-------------------------------------------------------------

जब Numerator  1 हो तथा Denominator under root के अंदर आया हो,

-------------------------------------------------------------

-------------------------------------------------------------

-------------------------------------------------------------
-------------------------------------------------------------

जब Function, under root के अंदर आया हो,

-------------------------------------------------------------
-------------------------------------------------------------
-------------------------------------------------------------


---------------------------------------------------------------------
-------------------------------------------------------------


--

-------------------------------------------------------


-------------------------------------------------------------

-------------------------------------------------------------

-------------------------------------------------------------
38.
When an algebraic expression is split into a sum of two or more rational expressions, then each part is called a partial fraction.

-------------------------------------------------------------
    

 INTEGRATION BY PARTS:

39. ∫ u.v. dx=. u∫ v dx. - ∫[ du/dx. ∫ v dx] dx







IMPORTANT NOTE  :   Inverse और log वाले Questions का INTEGRATION करने के लिए उनमें 1 से multiple कर देते हैं तथा 1 को second function मान लेते हैं और log या Inverse वाले को second function मान लेते हैं l
-------------------------------------------------------------

------------------------------------------------------------

-------------------------------------------------------------

------------------------------------------------------------

------------------------------------------------------------
 f(x) and f'(x) are good friends 


44.  ∫ f(x) .f'(x) dx = [ f(x) ]².  / 2      + C

45.  ∫  f(x)n  .f'(x) dx =.  [ f(x)n+1] / n+1  + C

46.  ∫ f '(x) / .f (x) dx = log|f(x)|. + C

47.  ∫ f '(x) /  f(x)n dx =.   [f(x)]n-1  / n-1.  + C


 

------------------------------------------------------------
48. .  ∫ f(x). d(g(x) dx = ∫ f(x). g'(x)dx

Ex :   ∫ x² . d (x³) dx  = 

=∫ x². d/dx (x³). dx
                                      
=∫ x². x⁴ /4 dx
                                    
=1/4 ∫ x⁶ dx

=1/4 [ x⁷/7] + C

=1/28. x⁷ + C
               

-----------------------------------------------------------










------------------------------------------------------------
Techniques to solve indefinite integrals

1. Integration by substitution
2. Integration by parts
3. Integration by partial fraction
4. Integration by reduction






              DEFINITE INTEGRAL.                 



No comments:

Post a Comment

Worksheet of A.P

  1. The common difference of the AP 1/p, (1 -p) /p ,(1 - 2p)/p is..  (a) p.        (b) -p.       (c) -1        (d) 1 2. If the nth term of...