Thursday, 27 June 2024

QUADRATIC EQUATION CONCEPT

                Quadratic equation concept            


     Topics.       

1.  What are Quadratic Equations?

2.  Roots of Quadratic Equation

3.  Methods to Solve Quadratic Equations

4.  Nature of Roots of quadratic equation

5.  Relationship Between Coefficients and Roots of Quadratic Equation

6. Finding a Quadratic Equation by roots 

7.  Solving a Quadratic Equation – Tips and Tricks


                                                                                 

 1. What is Quadratic Equation?   


Variable+ constant = terms 
                                          ⬇️
                                 polynomial
                                          ⬇️ 
                                 equation
                                          ⬇️ 
                                 degree 2
                                          ⬇️ 
                     Quadratic Equations 


The equation whose highest degree is two is called a quadratic equation . It is expressed in the form of:

ax² + bx + c =0 ( Standard form)

where x is the unknown variable and a, b and c are the constant terms ,a ≠ 0.

Example:

  • 2x² – 64 = 0
  • -2x² – 4 =0
  • ( x-2 )² + 1 = 2x - 3
  • x + 1/x = 2



                                                                               

2.  Roots of Quadratic Equation.     


●  The value of a variable for which the equation gets satisfied is called the solution or the root of quadratic equation. 

●  The number of roots of a polynomial equation is equal to its degree. 

Hence, a quadratic equation has 2  roots. 

The general form: ax² + bx + c = 0. Then α and β are the roots of quadratic equations.
...............................................................

 3.  Methods to Solve Quadratic Equations


(1): Factorisation Method
(2): Quadratic Formula 
(3): Complete The Square Method 
(4): Graphical Method 





  4.  Nature of Roots of quadratic equation


VALUE OF DISCRIMINANT
(  D )
NATURE OF ROOTS
b² – 4ac = 0Real and equal
b² – 4ac > 0 (is a perfect square)


Real, rational and unequal
b2 – 4ac > 0 (is not a perfect square)Real, Irrational and unequal 
b² – 4ac < 0

 Imaginary, 


 5. Relationship Between Coefficients and Roots of Quadratic Equation.  


Quadratic Equation      ( ax² + bx + c = 0 )

Sum of roots.       (α+ β).   =     -b/a
Product of roots   (α. β)    = c/a


 6. Finding a Quadratic Equation by roots 

• If α and β are given roots then the Quadratic Equation:

X² - ( α + β ) X +  α. β  = 0
      
               OR

(X- α (X- β ) = 0

                                                                                  





Saturday, 22 June 2024

R.S AGGARWAL 12 MATHS BOOK

        R.S .AGARWAL 12 MATHS BOOK                                           

Saturday, 15 June 2024

WORKSHEET OF QUADRATIC EQUATION CLASS-10

        WORKSHEET OF QUADRATIC EQUATION CLASS-10              

   

BASIC/STANDARD]



I. MULTIPLE CHOICE QUESTIONS

1. Which one of the following is not a quadratic equation ?

(a) (x + 2)² = 2(x + 3) 

(b) x² + 3x = (–1)(1 – 3x)²

(c) (x + 2)(x – 1) = x² – 2x – 3 

(d) x³ – x² + 2x + 1 = (x + 1)³


2. Which constant should be added and subtracted to solve the quadratic equation 4x² -√3x - 5= 0 ,by the method of completing the square ?

(a) 9/16

(b) 3/1

(c) 3/4

(d) √3/4


3. Which of the following is a quadratic equation?

(a)x² + 2x + 1 = (4 – x)² + 3 

(b) –2x² = (5 – x) (2x - 2/5)

(c)(k + 1)x² + 3/2 x= 7, k= -1

(d) x³ – x² = (x – 1)³


4. Which of the following is not a quadratic equation?

(a) 2(x – 1)² = 4x² – 2x + 1 

(b) 2x – x² = x² + 5

(c) {√2x + √3}² + x² = 3 x² - 5x

(d) (x² + 2x)² = x⁴ + 3 + 4x³


5. Which of the following has 2 as a root ?

(a) x² – 4x – 5 = 0 

(b) x² + 3x – 12 = 0

(c) 2x² – 7x + 6 = 0 

(d) 3x² – 6x – 2 = 0


6. If 1/ 2 is a root of the equation x² + kx - 5/4, then the value of k is:

(a) 2 

(b) –2 

(c) 1/4

(d) 1/ 2


7. Which of the following equations has the sum of its roots as 3?

(a) 2x² – 3x + 6 = 0 

(b) –x² + 3x – 3 = 0

(c) √2 x² - 3/√2 x +1= 0

(d) 3x² – 3x + 3 = 0


8. Value of k for which the quadratic equation 2x² – kx + k = 0, has equal roots is:

(a) 1 

(b) 2 

(c) 5 

(d) 0, 8


9. Which constant must be added and subtracted to solve the quadratic equation  9 x² + 3 /4 x  -√2 = 0 , by the method of completing the square?

(a) 1/8

(b) 1/64 

(c) 1/4 

(d) 9/64


10. The quadratic equation 2 x² - √5 x + 1 = 0 has : 

(a) Two distinct real roots 

(b) Two equal real roots

(c) No real roots 

(d) More than 2 real roots


11. Which of the following equations has two distinct real roots ?

(a) 2x² – 3 √2 x + 9/4 = 0

(b) x² + x – 5 = 0

(c) x² + 3x + 2√ 2 = 0 

(d) 5x² – 3x + 1 = 0


12. Which of the following equations has no real roots?

(a) x² – 4x + 3 √2 = 0 

(b) x² + 4x – 3 √2 = 0

(c) x² – 4x – 3 √2 = 0 

(d) 3x² + 4 √3 x + 4 = 0


13. (x² + 1)² – x² = 0 has : 

(a) Four real roots 

(b) Two real roots

(c) No real roots 

(d) One real root


14. If 8 is a root of the equation x² – 10x + k = 0, then the value of k is:

(a) 2 

(b) 8 

(c) –8 

(d) 16


15. The quadratic equation whose roots are real and equal is:

(a) 2x² – 4x + 3 = 0 

(b) x² – 4x + 4 = 0

(c) 3x² – 5x + 2 = 0 

(d) x² – 2√ 2 x – 6 = 0


16. If a, b are the roots of the equation x² – 5x + k = 0, then what is the value of k such 

that a – b = 1 ?

(a) 1 

(b) 3 

(c) 4 

(d) 6

17. The roots of the equation x² – 3x – m(m + 3) = 0, where m is a constant, are :

(a) m, m + 3 

(b) –m, m + 3 

(c) m, –(m + 3) 

(d) –m, – (m + 3)


18. The roots of the equation x² + 3x – (m + 2)(m + 5) = 0, where m is a constant, are :

(a) (m + 2), (m +5) 

(b) (m + 2), – (m +5)

(c) – (m + 2), (m +5) 

(d) – (m + 2), – (m +5)


19. The roots of the equation x² + x – p(p + 1) = 0, where p is a constant, are : 

(a) p, p + 1 

(b) –p, p + 1 

(c) p, – (p + 1) 

(d) –p, – (p + 1)


20. If one root of the equation 5x² – 13x + k = 0, is reciprocal of the other, then k = 

(a) 0 

(b) 5 

(c) 6 

(d) 1/6


21. If one root of the equation 2x² – 10x + p = 0 is 2, then the value of p is :

(a) –3 

(b) –6 

(c) 9 

(d) 12


22. The root of the quadratic equation 2x² – x – 6 = 0 are :

(a) –2, 3/2 

(b) 2, – 3/2 

(c) –2, –3/2 

(d) 2, 3/2





23. The roots of the quadratic equation x² + 5x – (a + 1) (a + 6) = 0, where a is a constant 

are : 

(a) a + 1, a + 6 

(b) (a + 1), – (a + 6)

(c) –(a + 1), (a + 6) 

(d) –(a + 1), – (a + 6)


24. Roots of the quadratic equation 3x² – 5x + 2 = 0, are :

(a) 1, 3/2 

(b) 2/3, 1 

(c) 1/3, 5 

(d) –3/2, 1


25. Roots of the quadratic equation 3x² – 2 √6 x + 2 = 0 are

(a) ✓2/3 ,✓2/3

(b)  - ✓2/3 ,✓2/3

(c).  - ✓2/3 ,  - ✓2/3

(d). - ✓2/3 ,✓3/2



26. If (16 /x)  - 1  = 15 / x+1

, where x ≠ 0, –1, then x =

(a) ± 2 

(b) ± 3 

(c) ± 4 

(d) ± 6


27. If 3 / (x+1) -  1/2 = 2/(3x-1)

where x ≠ –1, 1/3

, then x =

(a) 1, 2 

(b) 1, 3 

(c) 2, 3 

(d) 3, 5


28. If (4/ x ) - 3 = 5/(2x+5)

  where x ≠ 0, –3/2 , then x =

(a) 1, 2 

(b) –1, –2 

(c) 1, –2 

(d) 2, –3


29. If 14 /(x+3) -1 = 5/(x+1) , where x ≠ –3, –1, then x =

(a) 1, 3 

(b) 1, 2 

(c) 1, 5 

(d) 1, 4


30. If the sum of a number and its reciprocal is 10/3 , then, the number is :

(a) 2/3 

(b) 3 

(c) 4 

(d) 10

31. If the sum of the squares of two consecutive natural numbers is 421, then the numbers 

are:

(a) 14 and –15 

(b) 14 and 15 

(c) 13 and 15 

(d) –13 and –15


32. If  1 / (x-1) - 1/(x+5) = 6 / 7

where x ≠ 1, –5), then x =

(a) 2 and –6 

(b) 3 and 5 

(c) 5 and 4 

(d) 2 and 6


33. If 1/ (x − 2) + 2/(x – 1) = 6/x

 (where x ≠ 0,1, 2), then x =

(a) 3, 2/

(b) 5, 7/

(c) 3, 4/

(d) 7, 5/3


34. The sum of two numbers is 16 and sum of their reciprocals is 1/3. The number are:

(a) 13 and 3 

(b) 4 and 12 

(c) 11 and 5 

(d) 10 and 6

35. Two numbers differ by 4 and their product is 192. The numbers are:

(a) 12 and 16

 (b) 10 and 6 

(c) 20 and 24 

(d) 18 and 14


36. Sum of two numbers is 27 and their product is 182. The numbers are:

(a) 13 and 14 

(b) 15 and 12 

(c) 20 and 7 

(d) 22 and 5


37. The roots of the quadratic equation 2x² + ax – a,² = 0 are :

(a) – a, a/

(b) a, – a/2 

(c) a, a/2

(d) None of these


38. The values of  k  for which the quadratic equation 9x² – 3kx + k = 0 has equal roots is :

(a) 4 

(b) 0 

(c) 0 or 4 

(d) 1 or 4


39. The values of p for which the quadratic equation 4x² + px + 3 = 0 has equal roots is :

(a) ± 4 √3 

(b) ± 3 √2 

(c) ± 3√ 3 

(d) ± 5 √3


40. Roots of the quadratic equation √3 x² – 2√ 2 x –2 √3 = 0 are :

(a) −√ 2/√3 , √6 

(b) √3/√2 ,√6 

(c) √2/√3,− √6 

(d) √3/√2, − √6


41. A natural number, when increased by 12, equals 160 times its reciprocal. The number is:

(a) 8 

(b) 6 

(c) 4 

(d) 2


42. Roots of the equation ✓ (3x²-2) = 2x-1 are:

(a) 3, 1 

(b) 4, 1 

(c) 3, 2 

(d) 2, 3


43. Roots of the quadratic equation 1/3 x²-√11x +1= 0 are: 

(a) {3 √11 ± √87}/2 

(b) 3√12

(c) 5 √11

(d) √87/11


44. Roots of the quadratic equation 4x² – 4px + (p² – q²) = 0 are :

(a) {p ± q} /2

(b)  {p ± q} /3

(c) {q ± p} /5

(d) {p ± q} /8



45. Roots of the quadratic equation (2x – 3)² = 16 are :

(a) 7/2, -1/2

(b) 5/2 ,  -3/2 ,  

(c) 7/2 , 3/2

(d) 11/2 ,7/2


46. If the sum and product of two numbers are 24 and 128 respectively, then numbers are:

(a) 16 and 8 

(b) 18 and 6 

(c) 22 and 2 

(d) 14 and 10

47. The value of p for which one root of the quadratic equation px² – 14x + 8 = 0 is 6 times the other is :

(a) 5 

(b) 3 

(c) –3 

(d) 2


48. If x = 1 is a common root of the equations ax² + ax + 3 = 0 and x² + x + b = 0, then 

the value of a ÷ b =

(a) 3/4 

(b) 4/3 

(c) –3/4 

(d) – 4/3


49. If x – 4 = 12/x ,then the values of x are :

(a) –2, –6  

(b) 6, 2  

(c) 6, –2 

(d) – 6, 2


50. Roots of the equation (x – 1)² – 5(x – 1) – 6 = 0 are:

(a) (7, 0) 

(b) (6, 0) 

(c) (7, 6) 

(d) (6, –7)


                                                                                             

II. FILL IN THE BLANKS

1. If two number differ by 2 and their product is 360, the numbers are ________ and 

–––––––––.


2. The roots of the equation 2x² – x + 1/8 = 0 are _____________.


3. The roots of the equation 100x² – 20x + 1 = 0 are _____________.


4. The roots of the equation a²b²x² + b²x – a²x – 1 = 0 are _____________.


5. If 12 is divided into two parts such that their product is 32. Then two parts are 

_____________ and __________.


6. The attitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, then sum of other two sides is _____________.


7. The two consecutive odd natural numbers, the sum of whose squares is 202 _____________.


8. If –4 is a root of the quadratic equation x² + px – 4 = 0 and the quadratic equation

x² + px + k = 0 has equal roots, then the value of k = _____________.


9. If the equation (1 + m²) x² + 2 mcx + (c² – a²) = 0, then, a² (1 + m²) = ___________.


10. If I had walked 1 km per hour faster, I would have taken 10 minutes less to to walk 2 km. The rate of my walking is _____________.


11. The value(s) of p for which the quadratic equation 4x² – 3px + 9 = 0 has real root is 

_____________.


12. The sides of a right angled triangle are x – 1, x and x + 1. Then sides are __________  and ___________.


13. The roots of the quadratic eqaution x² + 3x – m (m + 3) = 0 where m is a constant are  _________ and _________.


14. A natural number is greater than twice its square root by 3. The number is ___________.


15. If the root of the equation m²x² + 2x (mc – 2a) + c² = 0 are equal, then c = _____________.

                                                                                             

III. VERY SHORT ANSWER QUESTIONS


1. Write the standard form of a quadratic equation.


2. If x = α is a solution of the quadratic equation A x² + Bx + C = 0, then A α² + Bα + C = 0. Is it true?


3. Find the roots of the quadratic equation (x + 2)² = 0.


4. What is the discriminant of a quadratic equation ax² + bx + c = 0?


5. Write the descriminant of 2x² – 7 = 0.


6. Write the condition for the quadratic equation ax² + bx + c = 0, to have real roots.


7. State the condition for the quadratic equation ax² + bx + c = 0 to have equal real roots.


8. State the condition for the quadratic equation ax³ + bx + c = 0 to have no real roots.


9. State Shreedharacharya Formula.



10. Find the nature of the roots of the quadratic equation 2x² – 4x + 3 = 0. [Cbse 2019]


11. For what values of k, the roots of the equation x² + 4x + k = 0 are real? [Cbse 2019]


12. If x = 3 is one root of the quadratic equation, x² – 2kx – 6 = 0, then find the value of k. [Cbse 2018]


                                                                                             

WORKSHEET -2 OF INTEGRATION.

         WORKSHEET -2 OF INTEGRATION.     


                                                                                  

Friday, 14 June 2024

WORKSHEET-1 OF INTEGRATION

        WORKSHEET -1 OF INTEGRATION.       


नीचे दी गई pdf को solve करने के लिए कुछ आवश्यक सुझाव:

1. fraction वाले Questions का integration करने के लिए पहले उन्हें proper fractions बनाते हैं, 

( proper fraction में numerator की degree Denominator की degree से छोटी होती है )


2. जब किसी fraction में Denominator में single term होती है तो अलग-अलग divide कर लेते हैं l


3.जब किसी fraction में Denominator में single term नहीं होती है तो numerator को divide कर लेते हैं l


4. Trigonometry वाले Questions में जब cos और 1  एक साथ आ जाते हैं तो पहले cos का ऐसा Formula रखते हैं जिससे 1 कट जाता है इसके बाद solve करते हैं l


5. Trigonometry वाले Questions में जब Sin और 1  एक साथ आ जाते हैं तो पहले  1 ki value. , sin² x+ cos²x  रखते हैं  इसके बाद solve करते हैं l


6. Trigonometry  and Inverse Trigonometry वाले Questions का INTEGRATION करने के लिए पहले उनका simplification कर लेते हैं l



Download pdf of worksheet-1 of integration 

https://drive.google.com/file/d/1tAQ6KiKinrRolzPXNMoisB23VX0UZFXs/view?usp=sharing

Monday, 3 June 2024

Properties of logarithms


There are 9 important properties of logarithms:
  •  1.  log 1 = 0.
  • 2. logₐ a = 1.
  • 3. log ab = log a + log b.
  • 4. log a/b = log a - log b.
  • 5. log am = m log a.
  • 6. logba = (log a)/(log b)
  • 7 .alogₐ x = x.
  • 8 .log e = 1
  • 9. elog x = x
                                                                                              

Worksheet of A.P

  1. The common difference of the AP 1/p, (1 -p) /p ,(1 - 2p)/p is..  (a) p.        (b) -p.       (c) -1        (d) 1 2. If the nth term of...